Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.639
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38594794

RESUMEN

Abstract: Dengue virus (DENV) infection causes 390 million infections per year and 40,000 deaths globally. It is endemic in many countries in Asia, Africa, the Americas, the Caribbean, and Oceania. Dengue is endemic in Timor-Leste year-round, but peak transmission occurs during the rainy season. We briefly describe the epidemiology of DENV in the Municipality of Dili between 2018 and 2022. There were 6,234 cases notified, with a mean annual incidence rate of 330 cases per 100,000 population. There were 55 deaths (case fatality rate 0.9%). The peak annual incidence (3,904 cases) occurred in 2022 after an outbreak was declared in January of that year; this outbreak included 760 cases of dengue haemorrhagic fever and 35 deaths. The number of outbreak cases requiring hospital treatment exceeded the usual capacity, but facilities established for coronavirus disease 2019 (COVID-19) isolation and treatment were repurposed to meet this demand. Existing strategies of vector control, minimising breeding sites and promoting early presentation for treatment should continue, as should the utilisation of surveillance systems and treatment facilities established during the COVID-19 pandemic. However, dengue incidence remains high, and other dengue control strategies-including the deployment of Wolbachia-infected mosquitoes-should be considered in Timor-Leste.


Asunto(s)
Virus del Dengue , Dengue , Animales , Humanos , Timor Oriental/epidemiología , Pandemias , Australia/epidemiología , Dengue/epidemiología
2.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562865

RESUMEN

Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of one year of mosquito-based arbovirus surveillance in two geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from eight distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time RT-PCR. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.

3.
Arch Microbiol ; 206(5): 214, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616229

RESUMEN

A complex interaction among virulence factors, host-genes and host immune system is considered to be responsible for dengue virus (DENV) infection and disease progression. Generation of auto-antibodies during DENV infection is a major phenomenon that plays a role in the pathophysiology of dengue hemorrhagic fever and dengue shock syndrome. Hemostasis, thrombocytopenia, hepatic endothelial dysfunction, and autoimmune blistering skin disease (pemphigus) are different clinical manifestations of dengue pathogenesis; produced due to the molecular mimicry of DENV proteins with self-antigens like coagulation factors, platelets and endothelial cell proteins. This review elaborately describes the current advancements in auto-antibody-mediated immunopathogenesis which inhibits coagulation cascade and promotes hyperfibrinolysis. Auto-antibodies like anti-endothelial cell antibodies-mediated hepatic inflammation during severe DENV infection have also been discussed. Overall, this comprehensive review provides insight to target auto-antibodies that may act as potential biomarkers for disease severity, and a ground for the development of therapeutic strategy against DENV.


Asunto(s)
Dengue , Humanos
4.
Matern Health Neonatol Perinatol ; 10(1): 7, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561854

RESUMEN

BACKGROUND: Despite maternal flavivirus infections' linkage to severe maternal and fetal outcomes, surveillance during pregnancy remains limited globally. Further complicating maternal screening for these potentially teratogenic pathogens is the overwhelming subclinical nature of acute infection. This study aimed to understand perinatal and neonatal risk for poor health outcomes associated with flaviviral infection during pregnancy in El Salvador. METHODS: Banked serologic samples and clinical results obtained from women presenting for labor and delivery at a national referent hospital in western El Salvador March to September 2022 were used for this study. 198 samples were screened for dengue and Zika virus IgM, and statistical analyses analyzed demographic and clinical outcome associations with IgM positivity. RESULTS: This serosurvey revealed a high rate of maternal flavivirus infection-24.2% of women presenting for labor and delivery were dengue or Zika virus IgM positive, suggesting potential infection within pregnancy. Specifically, 20.2% were Zika virus IgM positive, 1.5% were dengue virus IgM positive, and 2.5% were both dengue and Zika virus IgM positive. Women whose home had received mosquito abatement assistance within the last year by the ministry of health were 70% less likely to test IgM positive (aOR = 0.30, 95%CI: 0.10, 0.83). Further, statistical geospatial clustering revealed transmission foci in six primary municipalities. Pregnancy complications and poor birth outcomes were noted among the dengue and/or Zika virus maternal infection group, although these outcomes were not statistically different than the seronegative group. None of the resulting neonates born during this study were diagnosed with congenital Zika syndrome. CONCLUSIONS: The high rate of Zika virus detected among pregnant women and the lack of Zika-specific neonatal outcomes monitoring during a non-outbreak year highlights the need for continued surveillance in Central America and among immigrant mothers presenting for childbirth from these countries. As changing climatic conditions continue to expand the range of the disease vector, asymptomatic screening programs could be vital to early identification of outbreaks and clinical management of cases.

5.
Mol Divers ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570391

RESUMEN

Dengue virus, an arbovirus, leads to millions of infections every year ultimately leading to a high rate of mortality. Highly effective and specific therapeutic option is not available till date to combat viral infection. One of the first stages in the virus lifecycle encompasses the viral entry into the host cell which is mediated by the interaction between heparan sulphate and the Dengue virus envelope protein in turn leading to the interaction between the envelope protein receptor binding domain and host cell receptors. The heparan sulphate binding site on the envelope protein was established using literature survey and the result validated using ColDock simulations. We have performed virtual screening against the heparan sulphate binding site using DrugBank database and short-listed probable inhibitors based on binding energy calculation following Molecular Dynamics (MD) simulations in this study. Two compounds (PubChem IDS 448062 and 656615) were selected for further analyses on which RAMD simulations were performed to quantitate the binding stability of both the molecules in the protein binding pocket which ultimately led to the selection of ZK-806450 molecule as the final selected compound. Competitive binding MD simulation against dengue virus envelope protein was performed for this molecule and heparan sulphate in order to ascertain the efficiency of binding of this molecule to the dengue virus envelope protein in the presence of its natural ligand molecule and found that this molecule has a higher affinity for the dengue virus envelope protein GAG binding site than heparan sulphate. This study may help in the use of this inhibitor molecule to combat dengue virus infection in foreseeable future and open a new avenue for drug repurposing methodology using competitive binding MD simulation.

6.
Porto Biomed J ; 9(2): 249, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38623419

RESUMEN

Background: Dengue virus (DENV) and malaria parasites (MP) are among the common febrile diseases affecting the tropics and subtropics of the world. Both are mosquito-borne pathogens affecting humans and other animals. Methods: Blood samples were collected from 280 consented out-patients attending the selected hospitals and were analyzed. Malaria parasites were detected using microscopy and Malaria Ag Pf/Pan Rapid Test Device. Dengue virus was detected by serology and heminested reverse transcriptase PCR (hnRT-PCR) to target the flavivirus polymerase (NS5) gene. Results: Malaria parasites recorded a total positivity of 151 patients (53.9%) using microscopy, while DENV antibodies (DENV IgM and DENV IgG) were positive in 16 (5.7%) and 39 (13.9%) patients, respectively. There was a concurrent infection between MP/DENV IgM in 13 (4.6%) patients and MP/DENV IgG in 27 (9.6%) patients. Molecular identification revealed DENV serotype 2 in circulation. Conclusion: This study documents molecular evidence of dengue virus coexisting with malaria parasites in the study population, hence the need for efficient surveillance and control system.

7.
J Mol Biol ; : 168577, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642883

RESUMEN

The Red Queen Hypothesis (RQH), derived from Lewis Carroll's "Through the Looking-Glass", postulates that organisms must continually adapt in response to each other to maintain relative fitness. Within the context of host-pathogen interactions, the RQH implies an evolutionary arms race, wherein viruses evolve to exploit hosts and hosts evolve to resist viral invasion. This study delves into the dynamics of the RQH in the context of virus-cell interactions, specifically focusing on virus receptors and cell receptors. We observed multiple virus-host systems and noted patterns of co-evolution. As viruses evolved receptor-binding proteins to effectively engage with cell receptors, cells countered by altering their receptor genes. This ongoing mutual adaptation cycle has influenced the molecular intricacies of receptor-ligand interactions. Our data supports the RQH as a driving force behind the diversification and specialization of both viral and host cell receptors. Understanding this co-evolutionary dance offers insights into the unpredictability of emerging viral diseases and potential therapeutic interventions. Future research is crucial to dissect the nuanced molecular changes and the broader ecological consequences of this ever-evolving battle. Here, we combine phylogenetic inferences, structural modeling, and molecular dynamics analyses to describe the epidemiological characteristics of major Brazilian DENV strains that circulated from 1990 to 2022 from a combined perspective, thus providing us with a more detailed picture on the dynamics of such interactions over time.

8.
Rev Med Virol ; 34(3): e2535, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38610091

RESUMEN

Arthropod-borne viruses (arboviruses) pose significant threats to global public health by causing a spectrum of diseases ranging from mild febrile illnesses to severe neurological complications. Understanding the intricate interplay between arboviruses and the immune system within the central nervous system is crucial for developing effective strategies to combat these infections and mitigate their neurological sequelae. This review comprehensively explores the mechanisms by which arboviruses such as Zika virus, West Nile virus, and Dengue virus manipulate immune responses within the CNS, leading to diverse clinical manifestations.


Asunto(s)
Virus del Dengue , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Humanos , Sistema Nervioso Central , Inmunidad , Infección por el Virus Zika/complicaciones
9.
IDCases ; 36: e01964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646600

RESUMEN

Dengue is a systemic viral infection, and clinical findings vary from asymptomatic to life-threatening, including shock and neurological complications. Despite efforts in vector control, the disease continues to spread worldwide, and the number of annual dengue infections is estimated to be 390 million. For patients with severe dengue, early diagnosis is important; however, owing to the wide range of symptoms and severity, diagnosis can be difficult. Herein, we report the case of a 24-year-old man from Vietnam who was found to have dengue shock syndrome complicated by meningoencephalitis, even though he did not show the typical clinical manifestations of dengue infection. He was transported to our hospital by ambulance because of fever and altered mental status. Brain magnetic resonance imaging revealed hyperintensities in the bilateral thalamus and brainstem on the T2 sequence. After hospitalization, polymerase chain reaction testing of cerebrospinal fluid, serum, and urine revealed the presence of dengue virus serotype 2. This confirmed the diagnosis of dengue encephalitis. The patient was discharged on day 49 with impaired abduction of the left eye and urinary retention. In this case, the initial differential diagnosis was broad because the patient was unable to provide any medical history owing to altered mental status. In addition, the fact that he did not show the characteristic symptoms of dengue infection initially made the diagnosis very difficult. In conclusion, dengue fever should always be considered as a part of the differential diagnosis when a patient from an endemic area presents with fever and impaired consciousness.

10.
Afr J Infect Dis ; 18(2): 29-31, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606191

RESUMEN

Dengue fever and hepatitis A are endemic infections caused by viruses that mostly affect developing countries (Volchkova et al., 2016). Co-infection is rare, and represents a diagnostic challenge due to their overlapping symptoms (Yakoob et al., 2009). The febrile syndrome accompanied by abdominal pain and vomiting are the common clinical manifestations of both pathologies. However, confirmation of diagnosis depends on laboratory tests ( Khetarpal and Khanna, 2016; Abutaleb and Kottilil, 2020). We report a case of a young female with dengue and hepatitis A co-infection.

11.
Fitoterapia ; 175: 105955, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604259

RESUMEN

Brucea javanica, a valued traditional medicinal plant in Malaysia, known for its fever-treating properties yet remains underexplored for its potential antiviral properties against dengue. This study aims to simultaneously identify chemical classes and metabolites within B. javanica using molecular networking (MN), by Global Natural Product Social (GNPS), and SIRIUS in silico annotation. Liquid chromatography-mass spectrometry (LC-MS2)-based MN explores chemical diversity across four plant parts (leaves, roots, fruits, and stem bark), revealing diverse metabolites such as tryptophan-derived alkaloids, terpenoids, and octadecadenoids. Simultaneous LC-MS2 and MN analyses reveal a discriminative capacity for individual plant components, with roots accumulating tryptophan alkaloids, fruits concentrating quassinoids, leaves containing fusidanes, and stem bark primarily characterised by simple indoles. Subsequently, extracts were evaluated for dengue antiviral activity using adenosine triphosphate (ATP) and plaque assays, indicates potent efficacy in the dichloromethane (DCM) extract from roots (EC50 = 0.3 µg/mL, SI = 10). Molecular docking analysis of two major compounds; canthin-6-one (264) and 1-hydroxy-11-methoxycanthin-6-one (275) showed potential binding interactions with active sites of NS5 RNA-dependent RNA polymerase (RdRp) of dengue virus (DENV) protein. Subsequent in vitro evaluation revealed compounds 264 and 275 had a promising dengue antiviral activity with SI value of 63 and 1.85. These identified metabolites emerge as potential candidates for further evaluation in dengue antiviral activities.

12.
Health Sci Rep ; 7(4): e2034, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38655420

RESUMEN

Background: Dengue, the world's fastest-growing vector-borne disease, has skyrocketed in the 21st century. Dengue has harmed human health since its first known cases among Spanish soldiers in the Philippines to its 21st-century outbreaks in Southeast Asia, the Pacific, and the Americas. In light of the current circumstances, it is imperative to investigate its origin and prevalence, enabling the implementation of effective interventions to curb the upsurge. Methods: Our study examines the history of dengue outbreaks, and evolving impact on public health, aiming to offer valuable insights for a more resilient public health response worldwide. In this comprehensive review, we incorporated data from renowned databases such as PubMed, Google Scholar, and Scopus to provide a thorough analysis of dengue outbreaks. Results: Recent dengue outbreaks are associated with rapid urbanization, international travel, climatic change, and socioeconomic factors. Rapid urbanization and poor urban design and sanitation have created mosquito breeding places for dengue vectors. Also, international travel and trade have spread the pathogen. Climate change in the past two decades has favored mosquito habitats and outbreaks. Socioeconomic differences have also amplified the impact of dengue outbreaks on vulnerable communities. Dengue mitigation requires vector control, community engagement, healthcare strengthening, and international cooperation. Conclusion: Climate change adaptation and urban planning are crucial. Although problems remain, a comprehensive vector control and community involvement plan may reduce dengue epidemics and improve public health in our interconnected world.

13.
J Biomed Sci ; 31(1): 43, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649998

RESUMEN

Dengue viruses (DENV) are positive-stranded RNA viruses belonging to the Flaviviridae family. DENV is the causative agent of dengue, the most rapidly spreading viral disease transmitted by mosquitoes. Each year, millions of people contract the virus through bites from infected female mosquitoes of the Aedes species. In the majority of individuals, the infection is asymptomatic, and the immune system successfully manages to control virus replication within a few days. Symptomatic individuals may present with a mild fever (Dengue fever or DF) that may or may not progress to a more critical disease termed Dengue hemorrhagic fever (DHF) or the fatal Dengue shock syndrome (DSS). In the absence of a universally accepted prophylactic vaccine or therapeutic drug, treatment is mostly restricted to supportive measures. Similar to many other viruses that induce acute illness, DENV has developed several ways to modulate host metabolism to create an environment conducive to genome replication and the dissemination of viral progeny. To search for new therapeutic options, understanding the underlying host-virus regulatory system involved in various biological processes of the viral life cycle is essential. This review aims to summarize the complex interaction between DENV and the host cellular machinery, comprising regulatory mechanisms at various molecular levels such as epigenetic modulation of the host genome, transcription of host genes, translation of viral and host mRNAs, post-transcriptional regulation of the host transcriptome, post-translational regulation of viral proteins, and pathways involved in protein degradation.


Asunto(s)
Virus del Dengue , Dengue , Virus del Dengue/fisiología , Virus del Dengue/patogenicidad , Virus del Dengue/genética , Humanos , Dengue/virología , Animales , Interacciones Huésped-Patógeno , Replicación Viral
14.
Med Clin (Barc) ; 2024 Apr 19.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38643027

RESUMEN

Arboviruses represent a threat to transfusion safety for several reasons: the presence of vectors and the notification of autochthonous cases in our region, the recent increase in the number of cases transmitted through blood and/or blood component transfusion, the high prevalence rates of RNA of the main arboviruses in asymptomatic blood donors, and their ability to survive processing and storage in the different blood components. In an epidemic outbreak caused by an arbovirus in our region, transfusion centres can apply different measures: reactive measures, related to donor selection or arbovirus screening, and proactive measures, such as pathogen inactivation methods. The study of the epidemiology of the main arboviruses and understanding the effectiveness of the different measures that we can adopt are essential to ensure that our blood components remain safe.

15.
Curr Issues Mol Biol ; 46(3): 2093-2104, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38534750

RESUMEN

The major arboviruses mainly belong to the Bunyaviridae, Togaviridae, and Flaviviridae families, among which the chikungunya virus and dengue virus have emerged as global public health problems. The main objective of this study was to develop specific, sensitive, and cost-effective molecular multiplex RT-PCR and RT-qPCR assays for the rapid and simultaneous detection of CHIKV and the four serotypes of DENV for arbovirus surveillance. Specific primers for all viruses were designed, and one-step multiplex RT-PCR (mRT-PCR) and RT-qPCR (mRT-qPCR) were developed using reference strains of the CHIKV and DENV serotypes. The specificity of the test for all the viruses was confirmed through sequencing. The standard curves showed a high correlation coefficient, R2 = 0.99, for DENV-2 and DENV-3; R2 = 0.98, for DENV-4; and CHIKV; R2 = 0.93, for DENV-1. The limits of detection were calculated to be 4.1 × 10-1 copies/reaction for DENV-1, DENV-3, and CHIKV and 4.1 × 101 for DENV-2 and DENV-4. The specificity and sensitivity of the newly developed mRT-PCR and mRT-qPCR were validated using positive serum samples collected from India and Burkina Faso. The sensitivity of mRT-PCR and mRT-qPCR are 91%, and 100%, respectively. The specificity of both assays was 100%. mRT-PCR and mRT-qPCR assays are low-cost, and a combination of both will be a useful tool for arbovirus surveillance.

16.
Travel Med Infect Dis ; 59: 102699, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452991

RESUMEN

Dengue virus (DENV) is one of the most significant vector-borne pathogens worldwide. In this report, we describe clinical features and laboratory detection of dengue in a 45-year-old traveler to Nicaragua on return home to the United States in 2019. Clinical presentation was mild, with rash, headache, and fatigue, with only low-grade transient fever. Infection dynamics were documented by serology and PCR of serially collected body fluids. DENV serotype 2 was detected in whole blood 1 day after symptoms emerged, with viral RNA isolated to the red cell fraction, and remained detectable through day 89. DENV-2 RNA was detected in serum only on day 4, and IgM was undetectable on day 4 but evident by day 13. Viral RNA was also detected in urine. This report of DENV-2 RNA persistence in blood cells but only transient appearance in serum, supports the potential diagnostic value of whole blood over serum for PCR and opportunity of an expanded testing window. Informed testing approaches can improve diagnostic accuracy and inform strategies that preserve individual and public health.

17.
Vaccines (Basel) ; 12(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38543950

RESUMEN

Dengue virus (DENV) infection continues to be a public health challenge, lacking a specific cure. Vaccination remains the primary strategy against dengue; however, existing live-attenuated vaccines display variable efficacy across four serotypes, influenced by host serostatus and age, and predominantly inducing humoral responses. To address this limitation, this study investigates a multiepitope-based immunogen designed to induce robust cellular immunity across all DENV serotypes. The chimeric immunogen integrates H-2d specific MHC-I binding T-cell epitopes derived from conserved domains within the DENV envelope protein. Immuno-informatics analyses supported its stability, non-allergenic nature, and strong MHC-I binding affinity as an antigen. To assess the immunogenicity of the multiepitope, it was expressed in murine bone-marrow-derived dendritic cells (BMDCs) that were used to prime mice. In this experimental model, simultaneous exposure to T-cell epitopes from all four DENV serotypes initiated distinct IFNγ-CD8 T-cell responses for different serotypes. These results supported the potential of the multiepitope construct as a vaccine candidate. While the optimization of the immunogen design remains a continuous pursuit, this proof-of-concept study provides a starting point for evaluating its protective efficacy against dengue infection in vivo. Moreover, our results support the development of a multiepitope vaccine that could trigger a pan-serotype anti-dengue CD8 response.

18.
Phytomedicine ; 128: 155491, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38489894

RESUMEN

BACKGROUND: Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE: The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS: The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS: Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION: This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.

19.
BMC Infect Dis ; 24(1): 297, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448847

RESUMEN

BACKGROUND: Dengue is caused by a positive-stranded RNA virus called dengue virus, which is spread by Aedes mosquito species. It is a fast-growing acute febrile disease with potentially lethal consequences that is a global public health problem, mostly in tropical and subtropical countries. In Ethiopia, dengue fever is understudied, although the virus is still being transmitted and viral infection rates are rising. This systematic review and meta-analysis was aimed at estimating the pooled prevalence of DENV infection in Ethiopia. METHODS: A literature search was done on the PubMed, Hinari and Google Scholar databases to identify studies published before July, 2023. Random effects and fixed effects models were used to estimate the pooled prevalence of all three markers. The Inconsistency Index was used to assess the level of heterogeneity. RESULTS: A total of 11 studies conducted on suspected individuals with dengue fever and acutely febrile participants were included in this review. The majority of the studies had a moderate risk of bias and no study had a high risk of bias. A meta-analysis estimated a pooled IgG prevalence of 21% (95% CI: 19-23), a pooled IgM prevalence of 9% (95%CI: 4-13) and a pooled DENV-RNA prevalence of 48% (95% CI: 33-62). There is evidence of possible publication bias in IgG but not in the rest of the markers. CONCLUSION: Dengue is prevalent among the dengue fever suspected and febrile population in Ethiopia. Healthcare providers, researchers and policymakers should give more attention to dengue fever.


Asunto(s)
Aedes , Dengue , Animales , Humanos , Etiopía/epidemiología , Bases de Datos Factuales , Fiebre , Dengue/epidemiología , Inmunoglobulina G
20.
Trop Med Infect Dis ; 9(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38535884

RESUMEN

The burden of dengue has emerged as a serious public health issue due to its impact on morbidity, mortality, and economic burden. Existing surveillance systems are inadequate to provide the necessary data for the prompt and efficient control of dengue. Passive surveillance of dengue cases may lead to underreporting and delayed mitigation responses. Improved dengue control program requires sensitive and proactive methods for early detection of dengue. We collected and reviewed existing research articles worldwide on detecting dengue virus in Aedes species larvae. Searches were conducted in PUBMED and Google Scholar, including all the studies published in English and Bahasa Indonesia. Twenty-nine studies were included in this review in terms of assay used, positivity rate, and dengue serotype detected. The presence of dengue virus in immature mosquitoes was mostly detected using reverse transcription PCR (RT-PCR) in pooled larvae. In one study, dengue virus was detected in larvae from laboratory-infected mosquitoes using enzyme-linked immunosorbent assay (ELISA). The positivity rate of dengue virus detection ranged from 0 to 50% in field-caught larvae. Although various methods can detect the dengue virus, further research encourages the use of low-cost and less laborious methods for active surveillance of dengue in larvae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...